If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-2x-18=0
a = 8; b = -2; c = -18;
Δ = b2-4ac
Δ = -22-4·8·(-18)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{145}}{2*8}=\frac{2-2\sqrt{145}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{145}}{2*8}=\frac{2+2\sqrt{145}}{16} $
| -12x-7=-43 | | n-3n-6+2=3n-4+4 | | 6x^2+12x=6x^2+24 | | 0.73+0.33=1.57t-1.13 | | 3x-54=142-4x | | (2x – 10)(x + 6) = 0 | | 8(x-3)+14=2(4+5x) | | (n-2)×180°=135°×n | | 8y+2y=y+27 | | b+48÷b=14 | | 2a-6=2(a-3) | | -2(x-11)=46 | | 6x2−43x=−7 | | f(-20)=1+8 | | 12+a=64 | | 10m+5m-2m=3m-10 | | 5/8p-21/2=2 | | 4=-16x+4x | | -37x=48 | | 8u-12=46 | | x^2=x^2+2x+1+25 | | 2x+3-x=7-3x | | 2(2x+3)=4x+2 | | 3(x+25)+8x=339 | | 15.45+x=21.30 | | Y=5x-7. | | 49y=3(16y+14) | | 7/10c=9/10c | | 6x^2*3x=900 | | 2/3a=200 | | 2@(2x+3)=4x+2 | | 12w^2-13w+3=0 |